Electronics II

Lecture 03
BJT re Equivalent Model

Muhammad Tilal
Department of Electrical Engineering CIIT Attock Campus

Previous Lecture

- Amplifying Action in AC Domain.
- BJT Transistor Modeling.
- Important Amplifier Parameters using Two Port System
- Input Impedance.
- Output Impedance.

Session Overview

Topic	BJT re Equivalent Model
Concepts	Voltage Gain, Current Gain, Phase relationship re Equivalent Model for - Common Base Configuration. - Common Emitter Configuration. -Common Collector Configuration.
Recommended Reading	Sections 7.4 \& 7.5 of [1]
Keywords	re, BJT, Common Base, Common Emitter, Common Collector, Equivalent Model.

Voltage Gain, A_{v}

- Small signal ac voltage gain is given as

$$
A_{v}=V_{o} / V_{i}
$$

- If load is not connected to the output, then this voltage gain is called "no load voltage gain" and calculated as
$A V_{N L}=V_{0} /\left.V_{i}\right|_{R L}=$ infinite
- Normally for transistor amplifiers no load voltage gain is greater than the loaded voltage gain.
- $\mathrm{Vi}_{\mathrm{i}}=$
- $\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{s}}=$
- $\mathrm{Avs}_{\mathrm{s}}=\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}=$
- Avs =
- Typical Magnitude of voltage gain ?

Voltage Gain, A_{v}

- Example 7.3 (Boylestad):
- For the given BJT amplifier, determine
a. $\mathrm{V}_{\mathrm{i}}=$
b. $\mathrm{li}=$
c. $\mathrm{Z}_{\mathrm{i}}=$
d. Avs =
 $8^{\text {th }}$ Edition, Pearson Education Inc, ISBN: 81-7808-590-9.

9/9/2014

Current Gain, A_{i}

- The small signal ac current - $\mathrm{A}_{\mathrm{i}}=\mathrm{I}_{\mathrm{o}} / \mathrm{li}=-\left(\mathrm{V}_{\mathrm{o}} / \mathrm{RL}_{\mathrm{L}}\right) /\left(\mathrm{V}_{\mathrm{i}} / \mathrm{Z}_{\mathrm{i}}\right)$ gain is defined as

$$
\mathrm{A}_{\mathrm{i}}=\mathrm{I}_{\mathrm{o}} / \mathrm{li}
$$

$$
A_{i}=-\left(V_{o} Z_{i}\right) /\left(V_{i} R L\right)
$$

- For BJT amplifiers, typical range of Ai exceed from 1 to 100.
- For the given network

$$
\mathrm{l}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} / \mathrm{Z}_{\mathrm{i}}
$$

$\mathrm{I}_{\mathrm{o}}=-\mathrm{V}_{\mathrm{o}} / \mathrm{RL}$
$A_{i}=-\left(A_{v} Z_{i}\right) / R L$

Robert L. Boylestad, Electronic Devices and Circuit Theory,

Phase Relationship

- For a typical transistor amplifier at frequencies at which the effects of reactive elements can be ignored, the input and output signals are either 180 degrees out of phase or in phase.

r_{e}, Transistor Model

- This model employs a diode and controlled current source to represent the behavior of a transistor.
- Current controlled current source is the one in which the parameters of the current source are controlled by a current.
- The re transistor model will be investigated for the following three configurations of the BJT amplifiers.
- Common Base Configuration.
- Common Emitter Configuration.
- Common Collector Configuration.

Common Base Configuration

- A pnp transistor is employed to derive the re model for common base configuration.
- It is depicted in a way to replicate the two port network.
- The forward biased pn junction is replaced by a diode.
- A current source is connected in order to represent the collector current lc.
- AC resistance of diode can be determined by
- $\mathrm{rac}=26 \mathrm{mV} / \mathrm{ID} . \mathrm{re}=26 \mathrm{mV} / \mathrm{IE}$

Common Base Configuration

Robert L. Boylestad, Electronic Devices and Circuit Theory, $8^{\text {mb }}$ Edition, Pearson Education Inc, ISBN: 81-7808-590-9.

References

[1] Robert L. Boylestad, Electronic Devices and Circuit Theory, 8 ${ }^{\text {th }}$ Edition, Pearson Education Inc, ISBN: 81-7808-590-9.

