
Classic Filters 
 

There are 4 classic analogue filter types: Butterworth, Chebyshev, Elliptic and Bessel. There is no ideal 
filter; each filter is good in some areas but poor in others. 

• Butterworth: Flattest pass-band but a poor roll-off rate. 
• Chebyshev: Some pass-band ripple but a better (steeper) roll-off rate. 

• Elliptic: Some pass- and stop-band ripple but with the steepest roll-off rate. 
• Bessel: Worst roll-off rate of all four filters but the best phase response. Filters with a poor phase response 
will react poorly to a change in signal level. 
Butterworth  

The first, and probably best-known filter approximation is the Butterworth or maximally-flat response. It 
exhibits a nearly flat passband with no ripple. The rolloff is smooth and monotonic, with a low-pass or high-
pass rolloff rate of 20 dB/decade (6 dB/octave) for every pole. Thus, a 5th-order Butterworth low-pass filter 
would have an attenuation rate of 100 dB for every factor of ten increase in frequency beyond the cutoff 
frequency. It has a reasonably good phase response. 
 

 
   Figure 1 Butterworth Filter 
Chebyshev 

The Chebyshev response is a mathematical strategy for achieving a faster roll-off by allowing ripple in the 
frequency response. As the ripple increases (bad), the roll-off becomes sharper (good). The Chebyshev 
response is an optimal trade-off between these two parameters.  Chebyshev filters where  the ripple is only 
allowed in the passband are called type 1 filters. Chebyshev filters that have ripple only in the stopband are 
called type 2 filters , but are are seldom used. Chebyshev filters have a poor phase response. 
It can be shown that for a passband flatness within 0.1dB and a stopband attenuation of 20dB an 8th order 
Chebyshev filter will be required against a 19th order Butterworth filter. This may be important if you are 
using a lower specification processor. 

The following figure shows the frequency response of a lowpass Chebyshev filter. 



 
Figure 2 

Compared to a Butterworth filter, a Chebyshev filter can achieve a sharper transition between the passband 
and the stopband with a lower order filter. The sharp transition between the passband and the stopband of a 
Chebyshev filter produces smaller absolute errors and faster execution speeds than a Butterworth filter. 
The following figure shows the frequency response of a lowpass Chebyshev II filter.  

 

Figure 3 
Chebyshev II filters have the same advantage over Butterworth filters that Chebyshev filters have—a 
sharper transition between the passband and the stopband with a lower order filter, resulting in a smaller 
absolute error and faster execution speed. 

 
 

 
 

 
 

 
 

 
 

 
 



Elliptic 
The cut-off slope of an elliptic filter is steeper than that of a Butterworth, Chebyshev, or Bessel, but the 
amplitude response has ripple in both the passband and the stopband, and the phase response is very non-
linear. However, if the primary concern is to pass frequencies falling within a certain frequency band and 
reject frequencies outside that band, regardless of phase shifts or ringing, the elliptic response will perform 
that function with the lowest-order filter.  

 

  Figure 4 
Compared with the same order Butterworth or Chebyshev filters, the elliptic filters provide the sharpest 
transition between the passband and the stopband, which accounts for their widespread use. 
Bessell 

• Maximally flat response in both magnitude and phase 
• Nearly linear-phase response in the passband 

You can use Bessel filters to reduce nonlinear-phase distortion inherent in all IIR filters. High-order IIR 
filters and IIR filters with a steep roll-off have a pronounced nonlinear-phase distortion, especially in the 
transition regions of the filters. You also can obtain linear-phase response with FIR filters. 

 

  Figure 5 



 

  Figure 6 
You can use Bessel filters to reduce nonlinear-phase distortion inherent in all IIR filters. High-order IIR 
filters and IIR filters with a steep roll-off have a pronounced nonlinear-phase distortion, especially in the 
transition regions of the filters. You also can obtain linear-phase response with FIR filters. 

 
All the filters described above may be analogue or digital. However there is a lot of recorded data about the 
analogue varieties, so it is often the case that designers use the analogue equations and parameters used  and 
convert them to their digital equivalents. There are two main methods for this, namely the Impulse 
Invariant method and the Bilinear Transform method. 
Bilinear Transform 

Analogue filters are designed using the Laplace transform (s domain) which is the analogue equivalent of 
the Z transform for digital filters.  

Filters designed in the s domain have a transfer function like: 
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If we have a filter where 10 rads/sec = wc. Then multiply top and bottom by 10 
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To apply the Bilinear transform we just need to replace the s by: 
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Where T is the sampling period. So for a sampling frequency of 16Hz (T= 0.065 s) 
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And then just work it out! 
Near zero frequency, the relation between the analogue and digital frequency response is essentially linear. 
However as we near the Nyqist frequency it tends to become non-linear . This nonlinear compression is 
called frequency warping.  

In the design of a digital filter, the effects of the frequency warping must be taken into account. The 
prototype filter frequency scale must be prewarped so that after the bilinear transform, the critical 
frequencies are in the correct places.  



Impulse Invariant method 
The approach here is to produce a digital filter that has the same impulse response as the analogue filter. It 
requires the following steps: 

1. Compute the Inverse Laplace transform to get impulse response of the analogue filter 

2. Sample the impulse response  
3. Compute z-transform of resulting sequence 

Sampling the impulse response has the advantage of preserving resonant frequencies but its big disadvantage 
is aliasing of the frequency response. Before a continuous impulse response is sampled, a lowpass filter 
should be used to eliminate all frequency components at half the sampling rate and above. 
Using the low pass filter transfer function from the previous example: 

€ 

T(s) =
10
s+10

 

Now find the inverse Laplace transform from the Laplace transform tables, gives is: 
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y(t) =10e−10t  

The final step is to find the z transform, Y(z) of this time variation. Once again from the Laplace/z transform 
tables, eat has a z transformation of z/(z – z-aT). With a sampling frequency of 16Hz: 
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As Y(z) = T(z) x 1 for an impulse then: 
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